Intrinsic Functional Connectivity of the Striatum in Developing Adolescents

Submission ID	3000307
Submission Type	Poster
Торіс	Neuroscience
Status	Submitted
Submitter	Shady El Damaty
Affiliation	Georgetown University Medical Center, Department of Neurology

SUBMISSION DETAILS

Presentation Type Either Poster or Oral Presentation

Presentation Abstract Summary The striatum is a system of nuclei within the basal ganglia hypothesized to integrate input from sensorimotor, limbic and executive cortical networks for context-sensitive action selection via recurrent striatal-thalamic-cortical projections. Classical anatomical studies have suggested a topographic organization of function in the striatum. However, the depth of detail of striatal functional topography and how it changes postpubertal development remains poorly understood. In this paper, we implement masked Independent Component Analysis (mICA) on resting state functional Magnetic Resonance Imaging (fMRI) collected from 135 youths (ages 11-14) that had completed survey assessments of pubertal stage and predisposition for future risky behaviors. Split-half sampling revealed the fidelity of intrinsic striatal networks shared across youths plummets beyond estimates of 8 ICs. Striatal-cortical connectivity increased in a posterior-to-anterior gradient as a function of age and pubertal onset. Higher connectivity between the medial caudate and medial prefrontal cortex was present in more mature children and inversely correlated with risk for future adverse outcomes. Our results suggest delayed onset of refinement in connectivity between reinforcement learning brain areas predicts a proneness towards later risky behavior in adolescents. Overall, these methods demonstrate the utility of mICA and split-half sampling for reproducible functional parcellations of brain structures.

Paper Upload (PDF) intrinsic-functional-connectivity.pdf

Co-author Information

* Presenting Author

First Name	Last Name	Affiliation	E-mail
Shady *	El Damaty *	Georgetown University Medical Center, Department of Neurology	se394@georgetown.edu

Goldie	McQuaid	Georgetown University Medical Center, Department of Neurology	gam58@georgetown.edu
Kelly	Martin	Georgetown University Medical Center, Department of Neurology	kcm81@georgetown.edu
Valerie	Darcey	Georgetown University Medical Center, Department of Neurology	vld8@georgetown.edu
Emma	Rose	Pennsylvania State University, Department of Health & Family Studies	emmajanerose@gmail.co m
Diana	Fishbein	Pennsylvania State University, Department of Health & Family Studies	dfishbein@psu.edu
John	VanMeter	Georgetown University Medical Center, Department of Neurology	john.vanmeter.phd@gmail .com

Keywords

Keywords
resting-state functional connectivity
blind source seperation
striatum
subcortical parcellation
adolescent development
reproducibility
Unsupervised Learning