A Dichotomy of Visual Relations

Submission ID	3000304
Submission Type	Oral Presentation
Торіс	Cognitive Science
Status	Submitted
Submitter	Matthew Ricci
Affiliation	Brown University

SUBMISSION DETAILS

Presentation Type Either Poster or Oral Presentation

Presentation Abstract Summary Convolutional neural networks (CNNs) have achieved state-of-the-art performance in image classification (He et al., 2015). However, a growing body of work indicates that CNNs still struggle on visual rule-learning tasks (Fleuret et al. 2011, Gulcehre & Bengio, 2013, Ellis et al. 2015). Currently, our understanding of precisely which rule-based problems are hard or easy for CNNs is limited. Here, we conducted a systematic analysis of CNN performance on the 23 problems of the Synthetic Visual Reasoning Test (SVRT), while varying network hyperparameters. We find that one group of SVRT problems is easily solved by most networks, whereas another group is not solved at all. We propose that the soluble problems of this dichotomy rely only on spatial relations. Intractable problems, on other hand, require same-different judgments, in which image regions must be compared. We conclude by sketching a novel cognitive architecture designed to solve visual reasoning problems.

Paper Upload (PDF) CCN2017_final.pdf

Co-author Information

* Presenting Author

First Name	Last Name	Affiliation	E-mail
Matthew *	Ricci *	Brown University	mattgricci@gmail.com
Junkyung	Kim	Brown University	junkyung_kim@brown.edu
Dan	Shiebler	TrueMotion	dan@gotruemotion.com
Thomas	Serre	Brown University	thomas_serre@brown.edu

Keywords

Keywords	
Visual relations	

Convolutional networks	
Attention	
Memory	
Reinforcement Learning	
Mental imagery	