Towards a Cortically Inspired Deep Learning Model: Semi-Supervised Learning, Divisive Normalization, and Synaptic Pruning

Submission ID	3000302
Submission Type	Poster
Торіс	Artificial Intelligence
Status	Submitted
Submitter	Tan Nguyen
Affiliation	Rice University

SUBMISSION DETAILS

Presentation Type Either Poster or Oral Presentation

Presentation Abstract Summary Deep learning has driven dramatic advances in performance on a wide range of difficult machine perception tasks, and its applications abound. Yet for many tasks it still lags far behind the mammalian brain in term of performance and efficiency in natural tasks. Building a brain-inspired learning system to narrow the gap between artificial and biological neural networks has been a long sought-after goal in both the neuroscience and machine learning communities. To take a step towards a neurally plausible learning system, we build a class of models that use functional elements and computational principles of the cortex for more robust and versatile machine learning. In particular, we incorporate the following three major neural features into the Deep Convolutional Networks (DCNs): semi-supervised learning, divisive normalization, and synaptic pruning. These neural features are derived from a recently developed generative model underlying DCNs - the Deep Rendering Mixture Model (DRMM). Our semi-supervised learning algorithm achieves state-of-the-art performance on the MNIST and SVHN datasets and competitive results on CIFAR10 amongst all methods that do not use data augmentation. Our divisive normalization enables faster and more stable training. Using our synaptic pruning method, we can compress the model significantly with little loss in accuracy.

Paper Upload (PDF) ccn_cortically_inspired_dl.pdf

Co-author Information

* Presenting Author

First Name	Last Name	Affiliation	E-mail
Tan *	Nguyen *	Rice University	mn15@rice.edu
Wanjia	Liu	Rice University	wl22@rice.edu

Fabian	Sinz	Baylor College of Medicine	sinz@bcm.edu
Richard	Baraniuk	Rice University	richb@rice.edu
Andreas	Tolias	Baylor College of Medicine	astolias@bcm.edu
Xaq	Pitkow	Baylor College of Medicine	xaq@rice.edu
Ankit	Patel	Baylor College of Medicine	ankitp@bcm.edu

Keywords

Keywords
Deep Convolutional Neural Network
semi-supervised learning
divisive normalization
synaptic pruning
cortical-inspired model
generative model
Gaussian scale mixture
variational inference