Driving Deep Networks towards Human Vision

Submission ID	3000258
Submission Type	Poster
Торіс	Artificial Intelligence
Status	Submitted
Submitter	Drew Linsley
Affiliation	Brown University

SUBMISSION DETAILS

Presentation Type Either Poster or Oral Presentation

Presentation Abstract Summary As state-of-the-art deep convolutional networks (DCNs) begin to rival human observers on certain recognition tasks, a growing body of work has provided evidence that the visual strategy they employ is different than human observers. Here, we study how DCNs vs. human observers integrate visual information during object recognition. Results from a rapid visual categorization experiment suggest that human observers integrate visual information locally. However, DCN performance on the same stimuli indicates that they integrate visual information in a distributed manner across the entire image, spanning both object and context. We describe a novel approach for cuing DCNs to attend to those features that are emphasized by human observers, and demonstrate that training DCNs in this way teaches them visual strategies that are more consistent with those used by human observers -- effectively driving machine vision closer to primate vision.

Paper Upload (PDF) Linsley_et_al_CCN_2017.pdf

Co-author Information

* Presenting Author

First Name	Last Name	Affiliation	E-mail
Drew *	Linsley *	Brown University	drew_linsley@brown.edu
Sven	Eberhart	Brown University	sven2@brown.edu
Thomas	Serre	Brown University	thomas_serre@brown.edu

Keywords

(eywords	
bject recognition	
leep learning	

biological vision

human-in-the-loop machine learning

visual features