Feedforward Deep Neural Networks Diverge from Humans and Monkeys on Core Visual Object Recognition Behavior

Submission ID	3000256
Submission Type	Poster
Торіс	Neuroscience
Status	Submitted
Submitter	Rishi Rajalingham
Affiliation	DiCarlo Lab, Massachusetts Institute of Technology

SUBMISSION DETAILS

Presentation Type Poster Presentation

Presentation Abstract Summary A good model of human object recognition should mimic human behavioral responses at its output, including making the same pattern of errors over all images. We applied this straightforward visual Turing test to the leading feedforward computational models of human vision (hierarchical convolutional neural networks, HCNNs) and to a leading animal model (rhesus macaques) by comparing object identity reports for 240 images generated from 24 synthetic objects rendered with viewing parameter variation. Using high-throughput psychophysics in monkeys and humans, we tested all pairwise object discrimination tasks for each image. We observed that monkeys are highly consistent to humans in their image-level pattern of object confusions. Next, we found that all tested HCNNs were significantly less consistent with humans and with monkeys. This gap in consistency at the image level could not be rescued by primate-like retinal input sampling, choice of output decoders, or model training. Crucially, given that objects and images were in no way optimized to be adversarial to HCNNs, these results show that current HCNNs fail to replicate the image-level error patterns of primates. Going forward, high-resolution, image-level behavior could serve as a strong constraint for discovering models that more precisely capture the neural mechanisms of object recognition.

Paper Upload (PDF) RajalinghamIssa_CCN2017.pdf

Co-author Information

* Presenting Author

First Name	Last Name	Affiliation	E-mail
Rishi *	Rajalingham *	DiCarlo Lab, Massachusetts Institute of Technology	rishir@mit.edu

Elias B.	Issa	DiCarlo Lab, Massachusetts Institute of Technology	issa@mit.edu
Kailyn	Schmidt	DiCarlo Lab, Massachusetts Institute of Technology	kailyn@mit.edu
Kohitij	Kar	DiCarlo Lab, Massachusetts Institute of Technology	kohitij@mit.edu
James J.	DiCarlo	DiCarlo Lab, Massachusetts Institute of Technology	dicarlo@mit.edu

Keywords

Keywords
Deep Neural Networks
object recognition
human visual perception
macaque monkey