BachProp: A Trainable Generative Model of Music Scores

Submission ID	3000239
Submission Type	Poster
Торіс	Artificial Intelligence
Status	Submitted
Submitter	Florian Colombo
Affiliation	EPFL

SUBMISSION DETAILS

Presentation Type Either Poster or Oral Presentation

Presentation Abstract Summary Humans have been generating new pieces of music since the beginning of history. Starting from oral transmission to modern digitized representation, there is always been an interest in formalizing the structure of music. In this paper, we present an entirely data-driven probabilistic model of how human composers choose to combine particular notes or rhythms. BachProp is a conditional recur- rent neural network especially suited to extract relations between notes from examples. Its architecture is inspired by the structure of the MIDI format, where each note in a music score is represented by its relative timing and pitch value. BachProp is able to capture enough of the relation between notes present in datasets of polyphonic music in order to generate new and coherent pieces of music that exhibit a structure close to real polyphonic music scores.

Paper Upload (PDF) CCN17_BachProp_FColombo.pdf

Co-author Information

* Presenting Author

First Name	Last Name	Affiliation	E-mail
Florian *	Colombo *	EPFL	florian.colombo@epfl.ch
Wulfram	Gerstner	EPFL	wulfram.gerstner@epfl.ch

Keywords

Keywords	
recurrent neural networks	
Sequence Learning	
Polyphonic music modeling	