Principles for Models of Neural Information Processing

Submission ID	3000218
Submission Type	Poster
Торіс	Cognitive Science
Status	Submitted
Submitter	Kendrick Kay
Affiliation	Center for Magnetic Resonance Research, University of Minnesota

SUBMISSION DETAILS

Presentation Type Either Poster or Oral Presentation

Presentation Abstract Summary Here we provide a perspective on models of neural information processing in cognitive neuroscience. We define what these models are, explain why they are useful, and provide criteria for evaluating models. With these principles in mind, we review past work in which we used fMRI to identify the specific information-processing operations being performed by different neural populations across human visual cortex (Kay & Yeatman, 2017; Kay et al., 2008; Kay, Weiner, & Grill-Spector, 2015; Kay et al., 2013a; Kay et al., 2013b). We show how the models developed in this line of research build upon each other and account for increasingly large ranges of experimental manipulations and brain regions. We also show how the same modeling approach can be exploited to tackle not only sensory but also cognitive (e.g. attentional) operations. Finally, we contrast our modeling approach with recently developed deep neural network models. We contend that although deep neural network models are promising, substantial work is necessary to clarify what type of explanation these models provide, to determine what specific effects they accurately account for, and to improve our understanding of how they work.

Paper Upload (PDF) 20170906 CCN abstract.pdf

Co-author Information

* Presenting Author

First Name	Last Name	Affiliation	E-mail
Kendrick *	Kay *	Center for Magnetic Resonance Research, University of Minnesota	kay@umn.edu

Keywords

Keywords	
encoding models	

visual processing

deep neural network models