Identifying Information Broadcast in Complex Networks

Submission ID	3000127
Submission Type	Poster
Торіс	Cognitive Science
Status	Submitted
Submitter	Kyriacos Nikiforou
Affiliation	Imperial College London

SUBMISSION DETAILS

Presentation Type Either Poster or Oral Presentation

Presentation Abstract Summary How the human brain is able to successfully utilise its massively parallel computational resources still remains elusive. One of the possible mechanisms through which integration could take place is via a richly connected set of nodes in the brain, as described by the Connective Core Hypothesis. In this article, we complement empirical evidence with computer simulations by investigating how a simulated neural network with modular, small-world connectivity subject to external stimulation uses its dynamic activity to broadcast information through its connective core. Using time-resolved versions of Mutual Information and Transfer Entropy we analyse the non-stationary time series of the network activity to identify influences between the modules and visualise how stimulus-related information originates, spreads through the connective core and finally subsides as the network returns to equilibrium. Our results show that information in the simulated network is broadcast as described by the Connective Core Hypothesis, hence providing supporting evidence through well-founded mathematical simulations and analysis.

Paper Upload (PDF) ConnectiveCore.pdf

Co-author Information

* Presenting Author

First Name	Last Name	Affiliation	E-mail
Kyriacos *	Nikiforou *	Imperial College London	k.nikiforou@imperial.ac.u k
Pedro A. M.	Mediano	Imperial College London	pmediano@imperial.ac.uk
Murray	Shanahan	Imperial College London	m.shanahan@imperial.ac. uk

Keywords

Keywords	
Connective Core Hypothesis	
Mutual Information	
Transfer Entropy	
Complex Network Dynamics	
Small-World Networks	
Computer Simulation	
Non-stationary Timeseries	