A Supervised Approach to Understand Human Color Constancy

Submission ID	3000115
Submission Type	Poster
Торіс	Cognitive Science
Status	Submitted
Submitter	Vijay Singh
Affiliation	University of Pennsylvania

SUBMISSION DETAILS

Presentation Type Either Poster or Oral Presentation

Presentation Abstract Summary The human visual system has the ability to perceive stable object colors despite variations in the spectrum of the light reflected from objects due to variation in illumination, an ability called color constancy. Color constancy provides a model system for studying the brain's ability to combine sensory data with prior information about natural scene statistics in order to resolve ambiguity. To understand the computations that support color constancy, we developed a software pipeline that generates synthetic but none-the-less naturalistic hyperspectral color images and computes the corresponding retinal photoreceptor responses through an accurate model of the early visual system. We study these photoreceptor responses with a biologically-inspired learning method called Accuracy Maximization Analysis (AMA). AMA returns the receptive fields that select the most useful features for estimating a particular task-relevant variable. In this work, we learn the receptive fields that estimate what we call object luminance - the luminance of an object viewed under a standard illuminant (CIE-D65). Across scenes in which the illumination and the reflectance of the objects surrounding a target object vary, the AMA receptive fields, together with a Bayes-optimal decoder, estimate object luminance with a fractional root-mean-squared-error (RMSE) of ~18%, lower than errors produced by simpler methods.

Paper Upload (PDF) AbstractFinal.pdf

Co-author Information

* Presenting Author

First Name	Last Name	Affiliation	E-mail
Vijay *	Singh *	University of Pennsylvania	vsin@sas.upenn.edu
Benjamin	Heasly	University of Pennsylvania	benjamin.heasly@gmail.c om

Nicolas	Cottaris	University of Pennsylvania	cottaris@psych.upenn.ed u
David	Brainard	University of Pennsylvania	brainard@psych.upenn.ed u
Johannes	Burge	University of Pennsylvania	jburge@sas.upenn.edu

Keywords

Keywords
Color Constancy
Accuracy Maximization Analysis