Tensor Memories

Submission ID	3000099
Submission Type	Poster
Торіс	Cognitive Science
Status	Submitted
Submitter	Volker Tresp
Affiliation	Siemens

SUBMISSION DETAILS

Presentation Type Either Poster or Oral Presentation

Presentation Abstract Summary The hippocampal memory indexing theory of Teyler and DiScenna is one of the leading theories of memory formation. The main idea is that high-dimensional latent representations are formed in the hierarchical sensory processing layers of the brain as response to sensory inputs, and that these representations are linked to indices in the hippocampal area, forming a basis for an episodic memory. We extend the hippocampal memory indexing theory by including a decoder that extracts explicit information in the form of semantic triples using latent representations of entities and predicates. We demonstrate that, if a tensor model is used for explicit decoding, a semantic memory can be derived from episodic memory by a marginalization operation. Thus, our model supports the assumption that semantic memory is derived from episodic memory and that both rely on the same latent representations of generalized entities.

Paper Upload (PDF) TensorMemories.pdf

Co-author Information

* Presenting Author

First Name	Last Name	Affiliation	E-mail
Volker *	Tresp *	Siemens	volker.tresp@siemens.co m
Yunpu	Ма	Siemens	yunpu.ma@siemens.com
Stephan	Baier	LMU	stephan.baier@gmail.com

Keywords

Keywords	
episodic memory	

semantic memory

represenation learning

tensor models