Deep Learning with Segregated Dendrites

Submission ID	3000081
Submission Type	Oral Presentation
Торіс	Neuroscience
Status	Submitted
Submitter	Blake Richards
Affiliation	University of Toronto Scarborough

SUBMISSION DETAILS

Presentation Type Oral Presentation

Presentation Abstract Summary Deep learning in multilayer neural networks has revolutionized artificial intelligence (AI). The key to deep learning is assigning credit to each neuron for its role in producing behavior. In AI, credit assignment is done using the backpropagation algorithm. However, backpropagation requires a separate feedback pathway with neurons that communicate error derivatives via symmetric weights, and there is no experimental evidence for this type of feedback in the brain. Here, we show that an algorithm that utilizes multi-compartment neurons can perform credit assignment without a separate error pathway. Like pyramidal neurons, neurons in our model receive bottom-up sensory information and top-down feedback in electrotonically segregated dendritic compartments. Thanks to this segregation, neurons in different layers can be assigned credit for their contribution to behavior. As a result, multilayer versions of the network can learn to categorize images better than single layer versions. This work demonstrates that biologically feasible deep learning is possible using segregated dendritic compartments, which may help to explain the morphology of neocortical pyramidal neurons.

Paper Upload (PDF) deep-learning-segregated.pdf

Co-author Information

* Presenting Author

First Name	Last Name	Affiliation	E-mail
Jordan	Guerguiev	University of Toronto Scarborough	jordan.guerguiev@mail.ut oronto.ca
Timothy	Lillicrap	DeepMind Technologies	countzero@google.com
Blake *	Richards *	University of Toronto Scarborough	blake.richards@utoronto.c a

Keywords

Keywords
deep learning
target propagation
feedback alignment
neocortex
pyramidal neurons
dendrites